A Probabilistic Framework to Estimate Full-Chip Subthreshold Leakage Power Distribution Considering Within-Die and Die-to-Die P-T-V Variations
نویسندگان
چکیده
This paper presents a probabilistic framework for full-chip estimation of subthreshold leakage power distribution considering both within-die and die-to-die variations in process (P), temperature (T) and supply voltage (V). The results obtained under this framework are compared to BSIM results and are found to be more accurate in comparison to those obtained from existing statistical models. Using this framework, a quantitative analysis of the relative sensitivities of subthreshold leakage to P-T-V variations has been presented. For the first time, the effects of die-to-die channel length and temperature variations on subthreshold leakage are studied in combination with all within-die variations. It has been shown that for accurate estimation of subthreshold leakage, it is important to consider die-to-die temperature variations which can significantly increase the leakage power due to electrothermal couplings between power and temperature. Furthermore, the full-chip leakage power distribution arising due to both within-die and die-to-die P-T-V is calculated, which is subsequently used to estimate the leakage constrained yield under the impact of these variations. The calculations show that the yield is significantly lowered under the impact of within-die and die-to-die process and temperature variations.
منابع مشابه
Leakage and Variation Aware Thermal Management of Nanometer Scale Ics
For sub-100 nm CMOS technologies, leakage power forms a significant component of the total power dissipation, especially due to within-die and die-to-die variations in process (P), temperature (T) and supply voltage (V). Since leakage power and operating temperature are electrothermally coupled to each other, increasing power dissipation and thermal problems are becoming key concerns not only f...
متن کاملDetermination of Load and Strain-Stress Distributions in Hot Closed Die Forging Using the Plasticine Modeling Technique
An axisymmetric hot closed die-forging process has been studied by physical modeling technique using the plasticine. To observe the material flow pattern, layers of plasticine with different colors were used. The normal direction to the layers was considered a principal direction. The strain distribution was obtained by measuring the thickness of the plasticine layers. Based on the strain distr...
متن کاملPlastic Deformation Characteristics of Continuous Confined Strip Shearing Process Considering the Deformation Homogeneity and Damage Accumulation
In the present investigation, two dimensional elastoplastic finite element analysis was conducted to assess the deformation characteristics of Al 1100 alloy during continuous confined strip shearing (C2S2) process. The results of simulations showed that the plastic strain distribution across the deformed sample is non-uniform irrespective of the amount of friction and C2S2 die angle. The most u...
متن کاملOn the optimum die angle in rod drawing process considering strain-hardening effect of material
In this paper, rod drawing process of strain-hardening materials is investigated by analytical, numerical and experimental methods. The classic upper bound solution, based on the assumption of perfect plasticity, has been extended to consider the work-hardening of the material during the drawing process. For a given process conditions and mechanical properties of the rod material, the power ter...
متن کاملPower Supply Voltage Dependence of Within-Die Delay Variation of Regular Manual Layout and Irregular Place-and-Route Layout
Dependence of within-die delay variations on power supply voltage (VDD) is measured down to 0.4 V. The VDD dependence of the within-die delay variation of manual layout and irregular auto place and route (P&R) layout are compared for the first time. The measured relative delay (=sigma/average) variation difference between the manual layout and the P&R layout decreases from 1.56% to 0.07% with r...
متن کامل